Dopamine D4 receptor-deficient mice display cortical hyperexcitability.
نویسندگان
چکیده
The dopamine D(4) receptor (D(4)R) is predominantly expressed in the frontal cortex (FC), a brain region that receives dense input from midbrain dopamine (DA) neurons and is associated with cognitive and emotional processes. However, the physiological significance of this dopamine receptor subtype has been difficult to explore because of the slow development of D(4)R agonists and antagonists the selectivity and efficacy of which have been rigorously demonstrated in vivo. We have attempted to overcome this limitation by taking a multidimensional approach to the characterization of mice completely deficient in this receptor subtype. Electrophysiological current and voltage-clamp recordings were performed in cortical pyramidal neurons from wild-type and D(4)R-deficient mice. The frequency of spontaneous synaptic activity and the frequency and duration of paroxysmal discharges induced by epileptogenic agents were increased in mutant mice. Enhanced synaptic activity was also observed in brain slices of wild-type mice incubated in the presence of the selective D(4)R antagonist PNU-101387G. Consistent with greater electrophysiological activity, nerve terminal glutamate density associated with asymmetrical synaptic contacts within layer VI of the motor cortex was reduced in mutant neurons. Taken together, these results suggest that the D(4)R can function as an inhibitory modulator of glutamate activity in the FC.
منابع مشابه
Angiotensin-II type 1 receptor-mediated hypertension in D4 dopamine receptor-deficient mice.
Dopamine receptors are important in systemic blood pressure regulation. D4 receptors are expressed in the kidney and brain, but their role in cardiovascular regulation is unknown. In pentobarbital-anesthetized mice, systolic and diastolic blood pressures were elevated in sixth-generation D4 receptor-deficient (D4(-/-)) mice and in tenth-generation D4(-/-) mice compared with D4 wild-type (D4(+/+...
متن کاملKey role of the dopamine D4 receptor in the modulation of corticostriatal glutamatergic neurotransmission
Polymorphic variants of the dopamine D4 receptor gene (DRD4) have been repeatedly associated with numerous neuropsychiatric disorders. Yet, the functional role of the D4 receptor and the functional differences of the products of DRD4 polymorphic variants remained enigmatic. Immunohistochemical and optogenetic-microdialysis experiments were performed in knock-in mice expressing a D4 receptor wit...
متن کاملFacilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice.
Dopamine (DA) receptors play an important role in the modulation of excitability and the responsiveness of neurons to activation of excitatory amino acid receptors in the striatum. In the present study, we utilized mice with genetic deletion of D2 or D4 DA receptors and their wild-type (WT) controls to examine if the absence of either receptor subtype affects striatal excitatory synaptic activi...
متن کاملKLHL12 Promotes Non-Lysine Ubiquitination of the Dopamine Receptors D4.2 and D4.4, but Not of the ADHD-Associated D4.7 Variant
DOPAMINE D4 RECEPTOR POLYMORPHISM The dopamine D4 receptor has an important polymorphism in its third intracellular loop that is intensively studied and has been associated with several abnormal conditions, among others, attention deficit hyperactivity disorder. KLHL12 PROMOTES UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR ON NON-LYSINE RESIDUES In previous studies we have shown that KLHL12, a B...
متن کاملDopamine D4 receptor isoform mRNA and protein are expressed in the rat cortical collecting duct.
We reported previously [ Am. J. Physiol. 271 ( Renal Fluid Electrolyte Physiol. 40): F391-F400, 1996] that dopamine inhibits vasopressin (AVP)-dependent water permeability and Na+ transport in the rat cortical collecting duct (CCD) apparently through a D4 dopamine receptor. The present experiments used RT-PCR of total RNA extracted from microdissected rat CCD to determine whether the D4and D1A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2001